当前位置: > 设有一过原点直线交圆:x^2+y^2-6x+5=0于两点A、B...
题目
设有一过原点直线交圆:x^2+y^2-6x+5=0于两点A、B
求A、B中点M的轨迹方程

提问时间:2021-03-31

答案
圆X2+Y2-6X+5=0,
标准方程是(x-3)^2+y^2=4
圆心坐标(3,0)
利用所给条件,找到直线之间的关系,过原点的直线和过弦中点与圆心的直线垂直
设M点的坐标为(X,Y),中点M在过原点的直线上,所以过原点的直线斜率为k1=y/x
过弦中点与圆心的直线斜率为
k2=(y-0)/(x-3)=y/(x-3)
K1*k2=-1
最后得到x^2-3x+y^2=0,
化标准方程(x-3/2)^2+y^2=9/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.