当前位置: > 连续写出从1开始的自然数,写到2008时停止,得到一个多位数:123456789…2008请说明:这个多位数除以3,得到的余数是几?为什么?...
题目
连续写出从1开始的自然数,写到2008时停止,得到一个多位数:123456789…2008请说明:这个多位数除以3,得到的余数是几?为什么?

提问时间:2021-03-31

答案
(1+2+3+…+2008)
=(1+2008)×2008÷2
=2017036.
(2+1+7+3+6)÷3,
=19÷3,
=6…1;
则可推得原数字123…2008被3除余1.
答:这个多位数除以3,得到的余数是1.
能被3整除的数的特征,各位数字和被3整除的数,本身能被3整除.各位数字和被3除余几,原数被3除就余几.

数字和问题;有余数的除法.

此题考查了能被3整除的数的特征,以及对高斯求和公式的运用.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.