当前位置: > 一个高一证明题...
题目
一个高一证明题
设x1与x2分别是实系数方程ax²+bx+c=0和-ax²+bx+c=0的一个根,且x1≠x2≠0,求证:方程(a∕2)x²+bx+c=0有且仅有一根介于x1和x2之间.

提问时间:2021-03-31

答案
证明:∵ax^2+bx+c=0,-ax^2+bx+c=0
∴x=0为两方程的公共根;
∴c=0
∵x1与x2分别是方程ax^2+bx+c=0和-ax^2+bx+c=0个一个根,且x1≠x2≠0
∴x1=-b/a,x2=b/a
又(a/2)x^2+bx+c=0
∴x(ax+2b)=0
x=0,x=-2b/a
∴x=0在x1和x2之间;
又-2b/a在-b/a和b/a之外
∴方程(a/2)x^2+bx+c=0有且仅有一根介于x1和x2之间.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.