题目
高一一道证明题
已知S是两个整数平方和的集合,即S={x|x=m^2+n^2},m、n∈Z
求证:1、若s、t∈S,则st∈S
2、若s、t∈S,且t不为0,则s/t=p^2+q^2,其中p、q为有理数
已知S是两个整数平方和的集合,即S={x|x=m^2+n^2},m、n∈Z
求证:1、若s、t∈S,则st∈S
2、若s、t∈S,且t不为0,则s/t=p^2+q^2,其中p、q为有理数
提问时间:2021-03-31
答案
证明:若s、t∈S,则:设s=a^2+b^2,t=c^2+d^2.
1.st=(a^2+b^2)(c^2+d^2)
=(ac)^2+(ad)^2+(bc)^2+(bd)^2
=(ac)^2+2abcd+(bd)^2+(ad)^2-2abcd+(bc)^2
=(ac+bd)^2+(ad-bc)^2
所以st∈S
2.s/t=st/t^2=(a^2+b^2)(c^2+d^2)/(c^2+d^2)^2
=[(ac+bd)^2+(ad-bc)^2]/(c^2+d^2)^2
=(ac+bd)^2/(c^2+d^2)^2+(ad-bc)^2/(c^2+d^2)^2
=p^2+q^2
1.st=(a^2+b^2)(c^2+d^2)
=(ac)^2+(ad)^2+(bc)^2+(bd)^2
=(ac)^2+2abcd+(bd)^2+(ad)^2-2abcd+(bc)^2
=(ac+bd)^2+(ad-bc)^2
所以st∈S
2.s/t=st/t^2=(a^2+b^2)(c^2+d^2)/(c^2+d^2)^2
=[(ac+bd)^2+(ad-bc)^2]/(c^2+d^2)^2
=(ac+bd)^2/(c^2+d^2)^2+(ad-bc)^2/(c^2+d^2)^2
=p^2+q^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1语文(古诗)填空
- 2a属于R,求两直线y-ax-2(a+1)=0与ay+x+2(a-1)=0的交点的轨迹方程
- 3如图所示,在四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数?
- 4China will always do what she has promised to do
- 5一辆卡车从甲地开往乙地出发3小时后一辆轿车也从甲地开往乙地轿车比卡车晚30分钟
- 6一杯液体的质量为0.25kg体积为0.25dm的立方 求这种液体的密度
- 7要一篇以爱为中心的作文(500字左右),今晚就要!
- 8三分之一 四分之一 六分之一 八分之一写成比例
- 9动物的生活环境叫做动物的栖息地,它包括生活区域内的
- 10水龙头每秒滴下2滴水,每滴水0.05毫升,小明在洗手后,没有把水龙头拧紧,当小明离开4小时后,