当前位置: > 已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数...
题目
已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数

提问时间:2021-03-31

答案
令x=y=0
则有f(0)=2f(0)可得f(0)=0
再令x=-y(x为任意实数)
则有f(x+y)=f(0)=f(x)+f(y)=0
可得f(x)=—f(y)=-f(-x)
故可以得出f(x)为奇函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.