题目
在△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,则△ABC的形状( )
A. 等腰直角三角形
B. 等腰三角形
C. 直角三角形
D. 等边三角形
A. 等腰直角三角形
B. 等腰三角形
C. 直角三角形
D. 等边三角形
提问时间:2021-03-31
答案
利用正弦定理化简sin2A=sin2B+sin2C得:a2=b2+c2,
∴△ABC为直角三角形,
∵sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,
∴sinCcosB-cosCsinB=sin(C-B)=0,
∵C-B=0,即B=C,
则△ABC的形状为等腰直角三角形.
故选A
∴△ABC为直角三角形,
∵sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,
∴sinCcosB-cosCsinB=sin(C-B)=0,
∵C-B=0,即B=C,
则△ABC的形状为等腰直角三角形.
故选A
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点