题目
微积分、应用题,急
∫dx/根号下(X²+1)
∫XcosXdx
∫XcotXdx
∫sinX/(1-cosX)dx
lim X趋向于无穷 [ln(1+X)-lnX]/X
某海军基地,距陆地直线距离9KM,距离岸边的司令部 3又根号34 KM,知步行5KM/H,小船划行4KM/H,问,在何处登岸,到达司令部的时间最短.
∫dx/根号下(X²+1)
∫XcosXdx
∫XcotXdx
∫sinX/(1-cosX)dx
lim X趋向于无穷 [ln(1+X)-lnX]/X
某海军基地,距陆地直线距离9KM,距离岸边的司令部 3又根号34 KM,知步行5KM/H,小船划行4KM/H,问,在何处登岸,到达司令部的时间最短.
提问时间:2021-03-31
答案
1)∫dx/√(x²+1),令x=tanQ,dx=sec²QdQ
=∫sec²QdQ/√(1+tan²Q)
=∫sec²QdQ/√sec²Q
=∫secQdQ
=ln|secQ+tanQ|+C
由于已设x=tanQ,根据直角三角形,
secQ=√(1+x²)/1=√(1+x²)
于是原式=ln|x+√(1+x²)|+C
2)∫xcosxdx,施展分部积分法
=∫xd(sinx)
=xsinx-∫sinxdx
=xsinx-(-cosx)+C
=xsinx+cosx+C
3)∫xcotxdx
=∫xd[ln|sinx|]
=xln|sinx|-∫ln|sinx|dx
由于∫ln|sinx|dx的解是特殊函数,
4)∫sinxdx/(1-cosx)
=∫d(-cosx)/(1-cosx)
=∫d(cosx-1)/(cosx-1)
=ln|cosx-1|+C
5)lim[x→∞] [ln(1+x)-lnx]/x
=lim[x→∞] ln[(1+x)/x]/x,令t=1/x,t→0
=lim[t→0] tln[t(1+1/t)]
=lim[t→0] ln[(1+t)^t]
=ln[lim[t→0] (1+t)^(1/t)*t²]
=lne*lim[t→0] t²
=1*0
=0
用洛必达法则也可以:
lim[x→∞] [ln(1+x)-lnx]/x
=lim[x→∞] 1/(x+1)-1/x,代入数值
=1/(∞+1)-1/∞
=1/∞
=0
6)设登岸位置为(D),
先用勾股定理求出距离海军基地(A)9km的陆地(B)位置与司令部(C)位置的距离:
=√[(3√34)²-9²]
=15km
经画图确立三地位置构成直角三角形
设陆地位置(B)和登岸位置(D)之间的距离为x:
在水中,路径AD距离=√(9²+x²)=√(81+x²)
所需时间为(1/4)√(81+x²)
在陆地,路径DC距离=15-x
所需时间为(1/5)(15-x)
得出时间与距离关系式:f(t)=(1/4)√(81+x²)+(1/5)(15-x),为从(A)地到(C)地所需时间
求导f'(t)=x/[4√(81+x²)]-1/5
解f'(t)=0就得到极值
x/[4√(81+x²)]-1/5=0
5x=4√(x²+81)
25x²=16x²+1296
x²=144
x=12或-12(舍去)
∴在x=12时得到极小值.
f(12)=(1/4)√(81+12²)+(1/5)(15-12)
=15/4+3/5
=4.35
∴到达司令部的最短时间是4.35小时.
=∫sec²QdQ/√(1+tan²Q)
=∫sec²QdQ/√sec²Q
=∫secQdQ
=ln|secQ+tanQ|+C
由于已设x=tanQ,根据直角三角形,
secQ=√(1+x²)/1=√(1+x²)
于是原式=ln|x+√(1+x²)|+C
2)∫xcosxdx,施展分部积分法
=∫xd(sinx)
=xsinx-∫sinxdx
=xsinx-(-cosx)+C
=xsinx+cosx+C
3)∫xcotxdx
=∫xd[ln|sinx|]
=xln|sinx|-∫ln|sinx|dx
由于∫ln|sinx|dx的解是特殊函数,
4)∫sinxdx/(1-cosx)
=∫d(-cosx)/(1-cosx)
=∫d(cosx-1)/(cosx-1)
=ln|cosx-1|+C
5)lim[x→∞] [ln(1+x)-lnx]/x
=lim[x→∞] ln[(1+x)/x]/x,令t=1/x,t→0
=lim[t→0] tln[t(1+1/t)]
=lim[t→0] ln[(1+t)^t]
=ln[lim[t→0] (1+t)^(1/t)*t²]
=lne*lim[t→0] t²
=1*0
=0
用洛必达法则也可以:
lim[x→∞] [ln(1+x)-lnx]/x
=lim[x→∞] 1/(x+1)-1/x,代入数值
=1/(∞+1)-1/∞
=1/∞
=0
6)设登岸位置为(D),
先用勾股定理求出距离海军基地(A)9km的陆地(B)位置与司令部(C)位置的距离:
=√[(3√34)²-9²]
=15km
经画图确立三地位置构成直角三角形
设陆地位置(B)和登岸位置(D)之间的距离为x:
在水中,路径AD距离=√(9²+x²)=√(81+x²)
所需时间为(1/4)√(81+x²)
在陆地,路径DC距离=15-x
所需时间为(1/5)(15-x)
得出时间与距离关系式:f(t)=(1/4)√(81+x²)+(1/5)(15-x),为从(A)地到(C)地所需时间
求导f'(t)=x/[4√(81+x²)]-1/5
解f'(t)=0就得到极值
x/[4√(81+x²)]-1/5=0
5x=4√(x²+81)
25x²=16x²+1296
x²=144
x=12或-12(舍去)
∴在x=12时得到极小值.
f(12)=(1/4)√(81+12²)+(1/5)(15-12)
=15/4+3/5
=4.35
∴到达司令部的最短时间是4.35小时.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1如果一次函数y=kx+b的图象不经过第一象限,那么( ) A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
- 2常用来测定溶液酸碱度的pH试纸的颜色是( ) A.紫色 B.黄色 C.红色 D.蓝色
- 3100*10 110*10,70*5 角钢比重
- 4求一道高一必修1的物理题解析:
- 5为什么要规定角焊缝的最小、最大焊角尺寸
- 6九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱试问甜果苦果几个,又问个该几钱
- 7直线y=kx+b与x轴的交点A到原点的距离等于2,与y的交点为(0,1),求它的关系式
- 8peter is f----is a good cook,f后面填什么字母
- 9求:①水对杯底的压强②水对杯底的压力③杯底对桌面的压强④杯底对桌面的压力
- 10假如“重力突然消失”,会出现什么现象?
热门考点
- 1枇杷熟了点击答案 枇杷熟了.满街的.
- 2将铁片放入Hg(NO3)2溶液中,充分反应后滤液的质量比反应前溶液的质量减少24克,求参加反应的铁的质量
- 3t℃时某溶液250克蒸发10克水温度恢复t℃有5克晶体析蒸发10克水温度恢复到t℃又7克晶体析该物质在t℃溶解度
- 4放在斜坡上的物体的摩擦力?
- 5高中化学中所有有俗称的物质及其化学式,谢
- 6把圆锥展开的图形是什么
- 7轮胎气压220士5是什么意思
- 81、《龟虽寿》中最能体现诗人慷慨激昂,壮怀激烈的情感(老当益壮)的句子是:
- 9下列有关人体中酶和激素的叙述正确的是( ) A.酶和激素都是蛋白质 B.酶和激素都与物质和能量代谢有关 C.酶和激素都由内分泌细胞分泌 D.酶和激素都要释放到血液中才能发挥作用
- 10绝对值小于143.5的所有整数的和为____