当前位置: > 数值分析的证明题...
题目
数值分析的证明题
研究求a^1/2的牛顿公式X(k+1)=1/2(Xk+a/Xk),X0>0.
证明对一切k=1,2,...Xk>=a^1/2,且序列X1,X2...是递减的

提问时间:2021-03-30

答案
(1)首先证明所有的x(k)都大于零,因为x(0)>0,这个显然.(2)利用不等式1/2(a+b)>=sqart(ab) 证明所有的x(k)>=a^1/2,x(k+1)=1/2(x(k)+a/x(k))>=sqart{x(k)*a/x(k)}=sqart(a)=a^1/2.等号当且仅当x(k)=a^1/2时成立,进...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.