当前位置: > 大一高数微积分题,...
题目
大一高数微积分题,
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b)=0,证明:在开区间(a,b)内至少存在一点ξ,使得f(ξ)的导+f(ξ)=0

提问时间:2021-03-30

答案
设g(x)=f(x)*e^x,g'(x)=f'(x)*e^x+f(x)*e^x=[f'(x)+f(x)]*e^x
则g(x)在闭区间[a,b]上连续,在开区间(a,b)内可导
且g(a)=f(a)*e^a=0,g(b)=f(b)*e^b=0,
由拉格朗日中值定理知,
存在ξ,ξ∈(a,b),使得g'(ξ)=0.
即[f'(ξ)+f(ξ)]*e^ξ=0,而e^ξ>0
所以f'(ξ)+f(ξ)=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.