当前位置: > 设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a)....
题目
设函数f(x)在[0,2a]上连续,且f(0)=f(2a),试证明在[0,a]上至少存在一点ξ,使得f(ξ)=f(ξ+a).

提问时间:2021-03-30

答案
设F(x)=f(x)-f(x+a)
F(0)=f(0)-f(a)
F(a)=f(a)-f(2a)
F(0)* F(a)<0
所以 由介值定理,存在F(ξ)=f(ξ)- f(ξ+a)=0
所以,f(ξ)=f(ξ+a)
不懂追问
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.