当前位置: > x∈[1,2],使x2+2x+a≥0”为真命题,则实数a的取值范围是...
题目
x∈[1,2],使x2+2x+a≥0”为真命题,则实数a的取值范围是
为什么要利用原命题的否命题转化为求最值问题 还有一种分析是只要f(2)≥0就可 那为什么不是f(1)≥0 取1的时候不是值最小就可以恒成立了么

提问时间:2021-03-30

答案
f(x) = -x²+2x+a 是一个开口向下的抛物线,对称轴为 x = 1 ;
因为,区间 [1,2] 在对称轴的右侧,
所以,当 x∈[1,2] 时,f(1) 是最大值,f(2) 是最小值;
要使 x∈[1,2] 时,f(x) ≥ 0 恒成立,只要最小值 f(2) ≥ 0 即可;
可得:f(1) = 8+a ≥ 0 ,解得:a ≥ -8 ;
即有:实数a的取值范围是 [-8,+∞) .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.