当前位置: > 离散数学-近世代数部分的5个问题,...
题目
离散数学-近世代数部分的5个问题,
1.设G = {1,5,7,11},(G,*)为群,其中*为模12乘法,(1) 求5的阶(周期);
(2)(G,*)的所有真子群.
2.设H = {0,4,8},(H,+12)是群(N12,+12)的子群,其中N12= {0,1,2,…,11},+12是模12加法,
求H的左陪集3H .
3.设A = {a,b,c},(A,*)是群,a是单位元,求c的阶和b2.
4.在整数集Z上定义:a*b = a + b – 2,任意a,bZ.证明:(Z,*)是一个群.
5.设h是群G上的一个同态,|G| = 12,|h(G)|=3,K是核.求|K| 和 |G/K|.

提问时间:2021-03-29

答案
1.
(1)5²=25=1,所以|5|=2
(2)设KG2,有|G1|=|kerf||Imf|
所以对于h:G->G,有|G|=|K||h(G)|
所以|K|是4,|G/K|=|Im h|=|h(G)|=3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.