当前位置: > 矩形的长 宽 对角线都为整数,证明 面积为12的倍数...
题目
矩形的长 宽 对角线都为整数,证明 面积为12的倍数
详细一点

提问时间:2021-03-29

答案
在矩形中,长宽以及对角线都是整数意味着,在由长(a)宽(b)和对角线(c)构成的直角三角形中,a^2+b^2=c^2且a,b,c均为正整数
所以a,b,c满足a=k(m^2-n^2),b=2kmn,c=k(m^2+n^2)(其中k,m,n均为正整数)
所以矩形面积为S=ab=2k^2*mn*(m-n)*(m+n)
1.若m,n除以3余数相同,即m≡n(mod 3),则m-n必能被3整除,又因为m,n,(m-n),(m+n)其中至少有一个是偶数,所以S能被12整除;(包含余数对为<0,0>,<1,1>,<2,2>)
2.若m,n分别除以3后,余数之和为3或0,则(m+n)必能被3整除,又因为m,n,(m-n),(m+n)其中至少有一个是偶数,所以S能被12整除;(包含余数对为<1,2>,<2,1>)
3.若m,n中有一个除以3余0,则m和n中有一个必能被3整除,又因为m,n,(m-n),(m+n)其中至少有一个是偶数,所以S能被12整除;(包含余数有一个为0的所有情况)
上面三种情况包含了所有余数的情况
综上所述,S总能被12整除,所以这个矩形的面积必为12的倍数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.