当前位置: > 已知函数f(x)=ax3+bx2+cx(a、b、c为常数),f(x)在x=-1处有极值,曲线y=f(x)在点(3,-24)处的切线方程为8x+y=0,求a、b、c....
题目
已知函数f(x)=ax3+bx2+cx(a、b、c为常数),f(x)在x=-1处有极值,曲线y=f(x)在点(3,-24)处的切线方程为8x+y=0,求a、b、c.

提问时间:2021-03-29

答案
由已知,f'(x)=3ax2+2bx+c.(1分)
∵f(x)在x=-1处有极值,∴f'(-1)=0,即3a-2b+c=0.①
又∵f(3)=-24,f'(3)=-8,
∴27a+9b+3c=-24,27a+6b+c=-8.③(4分)
由①,②,③解得a=
1
3
,b=-2,c=-5.(6分)
利用在x=-1处有极值,则f'(-1)=0,而f(3)=-24,f'(3)=-8建立关于实数a、b、c的方程组,解之即可求出所求.

A:利用导数研究曲线上某点切线方程 B:函数在某点取得极值的条件

此题考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导函数的正负判断函数的单调性并根据函数的增减性得到函数的极值,是一道中档题.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.