当前位置: > 求证,函数f(x)=-2x^2+3x-1在区间(-00,3/4】上是单调递增函数...
题目
求证,函数f(x)=-2x^2+3x-1在区间(-00,3/4】上是单调递增函数

提问时间:2021-03-29

答案
用定义证明:
令x1<x2≤3/4
f(x2)-f(x1) = 【-2x2^2+3x2-1】-【-2x1^2+3x1-1】
= -2(x2^2-x1^2)+3(x2-x1)
= -2(x2+x1)(x2-x1) + 3(x2-x1)
= (x2-x1){3-2(x1+x2)}
∵x1<x2,∴x2-x1>0
∵x1<x2≤3/4,∴x1+x2<3/4+3/4=3/2,∴3-2(x1+x2)>3-2*3/2=0
∴f(x2)-f(x1)= (x2-x1){3-2(x1+x2)}>0
∴f(x2) >f(x1)
∴f(x)=-2x^2+3x-1在区间(-∞,3/4】上单调递增
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.