题目
高中一年级数学问题
在三角形ABC中,a、b、c的对边,且cosB、cosC=-b/2a+c
求角B的大小
若b=根号13,a+c=4,求a的值
提问时间:2021-03-29
答案
找到一道类试题你看看解法,
三角形ABC中,a b c分别是角ABC的对边 且cosB/cosC=- b/2a+c 1.求角B的大小 2.若b=根号3 a+c=4 求a的值
(1).
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)
所以:2cosBsinA+cosBsinC=-sinBcosC
就有:
2cosBsinA+cosBsinC+sinBcosC
=2cosBsinA+sin(B+C)
=2cosBsinA+sinA
=(2cosB+1)sinA
=0
在三角形ABC中,sinA>0
所以只有:cosB=-1/2
那么:B=120
(2).
b=根号13,a+c=4
cosB=-1/2=(a^2+c^2-b^2)/2ac=[(a+c)^2-2ac-b^2]/2ac
=(16-2ac-13)/2ac
=(3-2ac)/2ac
所以:
3-2ac=-ac
ac=3
所以由a+c=4,ac=3可以解得
a=3或者a=1
三角形ABC中,a b c分别是角ABC的对边 且cosB/cosC=- b/2a+c 1.求角B的大小 2.若b=根号3 a+c=4 求a的值
(1).
因为:cosB/cosC=-b/2a+c=-sinB/(2sinA+sinC)
所以:2cosBsinA+cosBsinC=-sinBcosC
就有:
2cosBsinA+cosBsinC+sinBcosC
=2cosBsinA+sin(B+C)
=2cosBsinA+sinA
=(2cosB+1)sinA
=0
在三角形ABC中,sinA>0
所以只有:cosB=-1/2
那么:B=120
(2).
b=根号13,a+c=4
cosB=-1/2=(a^2+c^2-b^2)/2ac=[(a+c)^2-2ac-b^2]/2ac
=(16-2ac-13)/2ac
=(3-2ac)/2ac
所以:
3-2ac=-ac
ac=3
所以由a+c=4,ac=3可以解得
a=3或者a=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一个钟表的分针长20厘米.这个分针半小时走过的面积是多少平方厘米?列式
- 2用公理证明:两直线平行,同位角相等
- 3thousand用法 何时加S!
- 4但手熟尔的意思
- 5初中化学鉴别题的方法是?
- 6一个三角形的底长5米,如果底延长1米,那么面积就增加1.5平方米,那么原来三角形的面积是_平方米.
- 7改错:seeing from space,the earth,with water covering
- 8已知抛物线在x轴上截得的线段长为4 且顶点坐标是(3,-2)求其解析式
- 99-3=8移动一根火柴让等式成立 如何移动
- 10某林场原有森林木材存量为a,木材每年以25%的增长率生长,而每年冬天要砍伐的木材量为x,则经过一年木材存量达到 _ ,经过两年木材存量达到 _ .
热门考点