当前位置: > 证明:四个连续整数的乘积不可能等于两个连续整数的乘积...
题目
证明:四个连续整数的乘积不可能等于两个连续整数的乘积
能想到的思路就是四个连续整数的乘积一定是24的倍数

提问时间:2021-03-29

答案
假设四个整数的最小的是n
那么这四个连续整数的乘积为 n(n+1)(n+2)(n+3)
因此,我们有 n(n+1)(n+2)(n+3)+1= [ (n+1)的平方 + n ]的平方 ,
也就是说,n(n+1)(n+2)(n+3)+1 是个完全平方数
假设两个整数中最小的是m
那么两个连续整数的乘积为 m(m+1)
如果 n(n+1)(n+2)(n+3)= m(m+1)
那么n(n+1)(n+2)(n+3)+ 1 = m(m+1)+1
那么 m(m+1)+1 也是一个完全平方数
但是显然 m2< m(m+1)+1 < (m+1)2
矛盾!
因此 n(n+1)(n+2)(n+3) ≠m(m+1)
证毕
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.