当前位置: > 以RT△ABC的直角边AB为直径的○O交斜边BC于E,F是AC的中点.求证:EF是○O的切线...
题目
以RT△ABC的直角边AB为直径的○O交斜边BC于E,F是AC的中点.求证:EF是○O的切线
方法多多益善。马上要走了。

提问时间:2021-03-28

答案
◆证法1:连接OE和AE.
∵AB为直径.
∴∠AEB=90°,即AE⊥CE.
又∵F为AC中点.
∴EF=AC/2=AF.(直角三角形斜边的中线等斜边的一半)
∴∠FEA=∠FAE(等边对等角);
同理:OE=OA,则∠OEA=∠OAE.
∴∠OEF=∠OAF=90°,故EF是圆O的切线.
◆证法2:连接OE,AE,OF.
AB为直径,则:∠AEB=90°,AE垂直CE.
又∵F为AC中点.(已知)
∴EF=AC/2=AF.
∵EF=AF;OE=OA,OF=OF.
∴⊿OEF≌⊿OAF(SSS),∠OEF=∠OAF=90°.
故:EF是圆O的切线.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.