当前位置: > 设f(x)=ax的平方+bx,且1小于等于f(-1)小于等于2,2小于等于f(1)小于等于4,求f(2)的取值范围...
题目
设f(x)=ax的平方+bx,且1小于等于f(-1)小于等于2,2小于等于f(1)小于等于4,求f(2)的取值范围
已知解法:f(-1)=a-b,f(1)=a+b,则1≤a-b≤2,2≤a+b≤4,f(2)=4a+2b,设f(2)=xf(-1)+yf(1),即4a+2b=xa+xb+ya+yb,亦即x+y=4,y-x=2,两式联立,可得x=1,y=3.
又f(-1)∈[1,2],f(1)∈[2,4],所以f(2)∈[1+2*3,2+4*3]=[7,14]
为什么不能直接用不等式做?
如:1〈=a-b〈=2
2〈=a+b〈=4
得出:6〈=4a〈=12
0〈=2b〈=3
从而f(2)=4a+2b
就会大于等于6,小于等于15
第二种解法错在哪里?

提问时间:2021-03-28

答案
4a取6时2b不能同时取0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.