当前位置: > 设在[0,1]上连续,在(0,1)内可导且∫0到1f(x)dx=∫0到1xf(x)dx=0,证明:存在ξ∈(0,1)使得f(ξ)=0...
题目
设在[0,1]上连续,在(0,1)内可导且∫0到1f(x)dx=∫0到1xf(x)dx=0,证明:存在ξ∈(0,1)使得f(ξ)=0

提问时间:2021-03-28

答案
证:设g(x) = ∫(0到x) (1-x) f(x) dx∫0到1f(x)dx=∫0到1xf(x)dx=0 ,∫(0到1) (1-x)f(x)dx =0 即 g(1) =0又g(0) =0g(x) 在[0,1]上连续,在(0,1)内可导,满足罗尔定理条件存在ξ∈(0,1)使得 g'(ξ) =0即 g'(ξ...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.