题目
证明题
f(u,v)在区域D=上连续,证明∫(π/2)(0)f(sinx,cosx)dx=∫(π/2)(0)f(cosx,sinx)dx
就是定积分的上限是π/2,下限是0
顺便问下曲线y=1/x+ln(1+e^x)分别有哪几条渐近线
f(u,v)在区域D=上连续,证明∫(π/2)(0)f(sinx,cosx)dx=∫(π/2)(0)f(cosx,sinx)dx
就是定积分的上限是π/2,下限是0
顺便问下曲线y=1/x+ln(1+e^x)分别有哪几条渐近线
提问时间:2021-03-28
答案
证明:由于sinx,cosx是连续函数,而由已知f(u,v)在区域D=上连续,所以复合函数f(sinx,cosx)和f(cosx,sinx)是在0≤x≤π/2是连续的,因此在0≤x≤π/2上f(sinx,cosx)和f(cosx,sinx)积分都存在.做积分变换y=π/2-x有
∫(π/2)(0)f(sinx,cosx)dx=-∫(0)(π/2)f(sin(π/2-y),cos(π/2-y))dy=∫(π/2)(0)f(cosy,siny)dy=∫(π/2)(0)f(cosx,sinx)dx
证毕.
另外,曲线y=1/x+ln(1+e^x)有两条渐近线x=0和y=0.
∫(π/2)(0)f(sinx,cosx)dx=-∫(0)(π/2)f(sin(π/2-y),cos(π/2-y))dy=∫(π/2)(0)f(cosy,siny)dy=∫(π/2)(0)f(cosx,sinx)dx
证毕.
另外,曲线y=1/x+ln(1+e^x)有两条渐近线x=0和y=0.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1线粒体是怎样为细胞活动提供能量的
- 2已cosx大于1/2求x的取值集合
- 3关于物理动量能量方面的问题
- 464分之40的约分
- 5英语作文例句汉翻英1
- 6已知sina=(1-a)/(1+a),cosx=(3a-1)/(a+1),x是第二象限角,求实数a
- 7梯形ABCD的两条对角线AC和BD相交于O点,已知三角形ABO 和三角形BCO 的面积分别是10平方厘米,15平方厘米,求梯形ABCD 的面积是多少平方厘米?
- 8His friend wants to be a doctor.(对a doctor提问)
- 9把9分之8米长的绳子平均分成4份,每份长( )米,每份占全长的( ),每份是1米的( ).
- 10平整场地的面积公式是什么
热门考点