当前位置: > 设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,...
题目
设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,
试证f(x)为偶函数,则F(x)也为偶函数.符号不太会打,

提问时间:2021-03-28

答案
若f(-x)=f(x)
则 F(-x)=∫(0到-x)(-x-2t)f(t)dt=∫(0到x)(-x+2t)f(-t)d(-t) (设-t=t)
=∫(0到x)-(-x+2t)f(t)dt)=∫(0到x)(x-2t)f(t)dt=F(x)
所以 F(x)也为偶函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.