当前位置: > 已知数列{an}满足:a1=λ,a(n+1)=(2/3)an+n-4,其中λ为实数,n为正整数,求证{an}不是等比数列...
题目
已知数列{an}满足:a1=λ,a(n+1)=(2/3)an+n-4,其中λ为实数,n为正整数,求证{an}不是等比数列

提问时间:2021-03-28

答案
a1=λ,依题有a2=(2/3)a1+1-4=(2/3)λ-3,a3=(2/3)a2+2-4=(2/3)a2-2=(2/3)[(2/3)λ-3]-2=(4/9)λ-4.
若a1,a2,a3成等比数列,则有a2的平方=a1*a3,
而题中a2的平方=[(2/3)λ-3]的平方=(4/9)λ的平方-4λ+9,a1*a3=λ[(4/9)λ-4]=(4/9)λ的平方-4λ,a2的平方不等于a1*a3,
故{an}不是等比数列.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.