当前位置: > (1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小; (2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,...
题目
(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,求∠AEC的大小;
(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;
(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠AEC与∠ADC、∠ABC之间是否仍存在某种等量关系?若存在,请写出你得结论,并给出证明;若不存在,请说明理由.

提问时间:2021-03-28

答案
(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
1
2
∠BCD,∠EAD=∠EAB=
1
2
∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=
1
2
(∠D+∠B),
∵∠ADC=40°,∠ABC=30°,
∴∠AEC=
1
2
×(40°+30°)=35°;
(2)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
1
2
∠BCD,∠EAD=∠EAB=
1
2
∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=
1
2
(∠D+∠B),
∵∠ADC=m°,∠ABC=n°,
∴∠AEC=
m°+n°
2

(3)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=
1
2
∠BCD,∠EAD=∠EAB=
1
2
∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-
1
2
∠BCD=∠B+∠BAE-
1
2
(∠B+∠BAD+∠D)=
1
2
(∠B-∠D),
即∠AEC=
∠ABC−∠ADC
2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.