当前位置: > 已知正项数列an满足:a²n-(n²+n-1)an-(n²+n)=0(n∈N+),数列bn的前n项和为Sn,且满足b1=1,2Sn=1+bn(n∈N+) 求an和bn的通...
题目
已知正项数列an满足:a²n-(n²+n-1)an-(n²+n)=0(n∈N+),数列bn的前n项和为Sn,且满足b1=1,2Sn=1+bn(n∈N+) 求an和bn的通向公式

提问时间:2021-03-28

答案
an²-(n²+n-1)an-(n²+n)=0
(an +1)[an-(n²+n)]=0
an=-1(数列为正项数列,an>0,舍去)或an=n²+n
数列{an}的通项公式为an=n²+n
2Sn=1+bn
时,2b1=2S1=1+b1
b1=1
n≥2时,
2bn=2Sn-2S(n-1)=1+bn-[1+b(n-1)]
2bn=bn-b(n-1)
bn=-b(n-1)
bn/b(n-1)=-1,为定值
数列{bn}是以1为首项,-1为公比的等比数列,bn=1×(-1)^(n-1)=(-1)^(n-1)
数列{bn}的通项公式为bn=(-1)^(n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.