题目
复习“全等三角形”的知识时,老师布置了一道作业题:“如下图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使得∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.
(1)小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.请你帮小亮完成证明.
(2)之后,小亮又将点P移到等腰三角形ABC之外,原题中的条件不变,“BQ=CP”仍然成立吗?若成立,请你就图②给出证明.若不成立,请说明理由.
提问时间:2021-03-27
答案
证明:(1)∵∠QAP=∠BAC,
∴∠QAP-∠BAP=∠BAC-∠BAP,
即∠QAB=∠CAP;
在△BQA和△CPA中,
,
∴△BQA≌△CPA(SAS);
∴BQ=CP.
(2)BQ=CP仍然成立,理由如下:
∵∠QAP=∠BAC,
∴∠QAP+∠PAB=∠BAC+∠PAB,
即∠QAB=∠PAC;
在△QAB和△PAC中,
,
∴△QAB≌△PAC(SAS),
∴BQ=CP.
∴∠QAP-∠BAP=∠BAC-∠BAP,
即∠QAB=∠CAP;
在△BQA和△CPA中,
|
∴△BQA≌△CPA(SAS);
∴BQ=CP.
(2)BQ=CP仍然成立,理由如下:
∵∠QAP=∠BAC,
∴∠QAP+∠PAB=∠BAC+∠PAB,
即∠QAB=∠PAC;
在△QAB和△PAC中,
|
∴△QAB≌△PAC(SAS),
∴BQ=CP.
此题的两个小题思路是一致的;已知∠QAP=∠BAC,那么这两个等角同时减去同一个角(2题是加上同一个角),来证得∠QAB=∠PAC;而根据旋转的性质知:AP=AQ,且已知AB=AC,即可由SAS证得△ABQ≌△ACP,进而得出BQ=CP的结论.
全等三角形的判定与性质;等腰三角形的性质.
此题主要考查了等腰三角形的性质以及全等三角形的判定和性质;选择并利用三角形全等是正确解答本题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1a rose for emily
- 2关于世界气温分布规律的叙述,正确的是( ) A.从低纬度向南、北两极逐渐递减 B.从南、北两极向低纬度逐渐递减 C.从沿海向内陆逐渐递减 D.从内陆向沿海逐渐递减
- 3回忆性的作文提纲怎么写,举个例子就行
- 4计算小数乘法先算什么再算什么
- 5求大神因式分解1+x+x(1+x)+x(1+x)²+...+x(1+x)的n次方
- 6如果函数f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),试求f(2)+f(-2)的值.
- 7which city is______(far)away from the sea,Beijing or Tianjin
- 8关于x的不等式组2x2+(2k+5)x+5k
- 9舰载机采用无“平飘”方式着舰.
- 10世界有哪些干旱地区?