当前位置: > 抛物线Y=X∧2,动点P在直线Y=X-2上动,过p点做抛物线切线交与AB,求△ABP的重心轨迹,...
题目
抛物线Y=X∧2,动点P在直线Y=X-2上动,过p点做抛物线切线交与AB,求△ABP的重心轨迹,

提问时间:2021-03-27

答案
思路:设P(t,t-2),设切点(x0,x0^2),由切线方程将x用t表示,得到A,B的坐标,从而得到重心坐标,从参数方程解出常规方程
切线方程y-x0^2=2x0(x-x0)
解得x0=t±√(t^2-t+2)
重心坐标(t,(4t^2-t+2)/3)
故轨迹方程为y=(4x^2-x+2)/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.