题目
如图,直角坐标系中,一锐角三角形AOB的一边与x轴正半轴重合,另一边OA与函数y=1/x的图像交于点p.以点p为圆心,以2po长为半径画弧交y=1/x的图像于点r,分别过点p、r做x轴、y轴的平行线,得到矩形pqrm,连接om.求证:(1)点q在直线om上;(2)角mob=1/3角aob
提问时间:2021-03-27
答案
1)
pqrm四点坐标:
p(xp,1/xp);
q(xp,1/xr);
r(xr,1/xr);
m(xr,1/xp);
则Op斜率为1/(xp·xr)
Om斜率为1/(xr·xp)
它们斜率相同,又都过点O
所以Op与Om为同一条直线.
∴点q在直线om上
2)
以2po长为半径画弧交y=1/x的图像于点r,则
√(xr^2+1/xr^2)=2√(xp^2+1/xp^2)
而|pr|=√[(xp-xr)^2+(1/xp+1/xr)^2]
=√[(xp^2+1/xp^2)-2xp·xr-2/(xp·xr)+(xr^2+1/xr^2)]
=√[(3/2)(xr^2+1/xr^2)-2(xp·xr+1/(xp·xr))]
设矩形的中心是T;则容易证明∠pTO=2∠mqr=2∠mob
只要从数量关系上证明出pT=pO,或pr=or,即∠pTO=∠AOm,就可以了
pqrm四点坐标:
p(xp,1/xp);
q(xp,1/xr);
r(xr,1/xr);
m(xr,1/xp);
则Op斜率为1/(xp·xr)
Om斜率为1/(xr·xp)
它们斜率相同,又都过点O
所以Op与Om为同一条直线.
∴点q在直线om上
2)
以2po长为半径画弧交y=1/x的图像于点r,则
√(xr^2+1/xr^2)=2√(xp^2+1/xp^2)
而|pr|=√[(xp-xr)^2+(1/xp+1/xr)^2]
=√[(xp^2+1/xp^2)-2xp·xr-2/(xp·xr)+(xr^2+1/xr^2)]
=√[(3/2)(xr^2+1/xr^2)-2(xp·xr+1/(xp·xr))]
设矩形的中心是T;则容易证明∠pTO=2∠mqr=2∠mob
只要从数量关系上证明出pT=pO,或pr=or,即∠pTO=∠AOm,就可以了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1细胞中,被称为 动力车间 的是什么
- 2适合做读书笔记的文章
- 3These shoes are "under the bed."对双引号部分提问
- 4ab两地相距50千米,甲乘公共汽车从A地出发去B地,2小时后乙乘小汽车从A地出发去B地,
- 5什么颜色的花在自然界最多
- 6已知a,b为常数,limx→2 (ax+b)/(x-2)=2,求a,b的值.
- 7我的家乡美在大庆
- 8绿色植物是怎样参于生物圈中的水循环的?
- 9有三个共点力,分别是2N.3N.8N,他们的合力最大值是 N,最小值是 N.
- 10将下列名词变为复数形式 1.name-2.card-3.pen-4.case-5.friend-6.son-7.brother-8.sister-9.parent