当前位置: > 设连续函数f﹙x﹚满足lim﹙x→0﹚f﹙x﹚/x=2 ,令F﹙x﹚=∫﹙0,1﹚f﹙xt﹚dt ,则F′﹙0﹚= _______...
题目
设连续函数f﹙x﹚满足lim﹙x→0﹚f﹙x﹚/x=2 ,令F﹙x﹚=∫﹙0,1﹚f﹙xt﹚dt ,则F′﹙0﹚= _______

提问时间:2021-03-27

答案
lim(x→0) ƒ(x)/x = 2
F(x) = ∫(0→1) ƒ(xt) dt
令u = xt,du = x dt
t = 0,u = 0
t = 1,u = x
F(x) = ∫(0→x) ƒ(u) * (1/x du)
F(x) = (1/x)∫(0→x) ƒ(u) du
F'(x) = (1/x)ƒ(x) - (1/x²)∫(0→x) ƒ(u) du
F'(0) = lim(x→0) ƒ(x)/x - lim(x→0) [∫(0→x) ƒ(u) du]/x²
= 2 - lim(x→0) ƒ(x)/(2x)
= 2 - (1/2)(2)
= 1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.