题目
三重积分∫∫∫zdv,积分区域由x^2 y^2 z^2≥z和x^2 y^2 z^2<2z围成
如题用球面积分我做出来的是∫(0-2π)dθ∫(0-2/π)dφ∫(cosφ-2cosφ)(ρ^3sinφcosφ)dρ请问哪里错了...为什么和直角坐标求出来的结果不一样...顺便求柱面坐标的方法
如题用球面积分我做出来的是∫(0-2π)dθ∫(0-2/π)dφ∫(cosφ-2cosφ)(ρ^3sinφcosφ)dρ请问哪里错了...为什么和直角坐标求出来的结果不一样...顺便求柱面坐标的方法
提问时间:2021-03-27
答案
你球坐标的式子没错啊,可能是直角坐标的式子列错了呢?
球坐标:
小球体:r² = rcosφ ==> r = cosφ
大球体:r² = 2rcosφ ==> r = 2cosφ
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→2cosφ) rcosφ * r² dr
- ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→cosφ) rcosφ * r² dr
= 4π/3 - π/12
= 5π/4
柱坐标:
{ r² + z² = z { r² + z² = 2z
{ r² + (z - 1/2)² = 1/4 { r² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→1) r dr ∫(1 - √(1 - r²)→1 + √(1 - r²)) z dz
- ∫(0→2π) dθ ∫(0→1/2) r dr ∫((1/2)(1 - √(1 - 4r²))→(1/2)(1 + √(1 + 4r²))) z dz
= 4π/3 - π/12
= 5π/4
直角坐标:
{ x² + y² + z² = z ==> x² + y² + (z - 1/2)² = (1/2)²
{ x² + y² + z² = 2z ==> x² + y² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(- 1→1) dx ∫(- √(1 - x²)→√(1 - x²) dy ∫(1 - √(1 - x² - y²)→1 + √(1 - x² - y²)) z dz
- ∫(- 1/2→1/2) dx ∫(- √(1/4 - x²)→√(1/4 - x²)) dy ∫(1/2 - √(1/4 - x² - y²)→1/2 + √(1/4 - x² - y²)) z dz
= 4π/3 - π/12
= 5π/4
球坐标:
小球体:r² = rcosφ ==> r = cosφ
大球体:r² = 2rcosφ ==> r = 2cosφ
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→2cosφ) rcosφ * r² dr
- ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→cosφ) rcosφ * r² dr
= 4π/3 - π/12
= 5π/4
柱坐标:
{ r² + z² = z { r² + z² = 2z
{ r² + (z - 1/2)² = 1/4 { r² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(0→2π) dθ ∫(0→1) r dr ∫(1 - √(1 - r²)→1 + √(1 - r²)) z dz
- ∫(0→2π) dθ ∫(0→1/2) r dr ∫((1/2)(1 - √(1 - 4r²))→(1/2)(1 + √(1 + 4r²))) z dz
= 4π/3 - π/12
= 5π/4
直角坐标:
{ x² + y² + z² = z ==> x² + y² + (z - 1/2)² = (1/2)²
{ x² + y² + z² = 2z ==> x² + y² + (z - 1)² = 1
∫∫∫Ω z dV
= ∫(- 1→1) dx ∫(- √(1 - x²)→√(1 - x²) dy ∫(1 - √(1 - x² - y²)→1 + √(1 - x² - y²)) z dz
- ∫(- 1/2→1/2) dx ∫(- √(1/4 - x²)→√(1/4 - x²)) dy ∫(1/2 - √(1/4 - x² - y²)→1/2 + √(1/4 - x² - y²)) z dz
= 4π/3 - π/12
= 5π/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1阿拉伯人给中国带来了什么,天文学和医学知识
- 2打印一份稿件,若由甲单独打印,要2/3小时完成.若由乙单独打印,要45分钟完成.两人合打,多少小时打印
- 3x*e^(-x) x取正无穷大时极限是多少?
- 4运用物理学原理,请设计一个与日常生活相关的实验
- 5X*880=(9-X)*760
- 6太阳系的八大行星中谁没有卫星?
- 7The students are having a concert to raise money for charity.对to后的部分提问
- 8The postman noticed that two men,carring______looked like guns,enterd the bank.
- 9已知向量a=(sinθ,-2)b=(1,cosθ),互相垂直,其中θ∈(0,π/2) (1)求cosθ和sinθ.
- 10l like milk ,hamburgers ,hot dogs ,noodles ,soup ,fruit ,vegetablas ,chicken ,dumplings.
热门考点
- 1用因式分解法解(x-3)²=2x-6
- 2爱莲说里比喻君子既不与世俗同流合污,又不顾高自傲的句子是?比喻君子志洁行廉,庄重而有令人钦佩的句子是?最能概括莲的高贵品质的一句话是?做这些莲花,为什么要先谢陶渊明爱菊,是人爱牡丹,这样写有什么作用?
- 3我要对付sandy用英语怎么说
- 4A车从甲站以加速度a1到乙站,用加速度a2到丙站.
- 5过原点O做圆X平方加Y平方减8X等于0 ,则弦长OA中点M轨迹方程是多少?
- 6两块同样重的金银合金:第一块金中的金与银的质量比是2:5,第二块合金中金与银的质量比是3:7,将两块合成一块,合金中金与银的比是多少
- 7若一物体做初速度为零的匀加速直线运动,则下列说法中不正确的是
- 8已知椭圆c过点M(1,根号6/2)点F(-根号2,0)是左焦点,点P.Q是椭圆上的动点 ,且PF MF QF 成等差数列
- 9数学证明题(代数)
- 10-(2a -b )+[a -(3a +4b ]