当前位置: > 如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F. (1)求证:△ADE≌△BCE;(2)求∠AFB的度数....
题目
如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA,延长BE交边AD点于点F.
作业帮
(1)求证:△ADE≌△BCE;
(2)求∠AFB的度数.

提问时间:2021-03-27

答案
(1)证明:∵ABCD是正方形∴AD=BC,∠ADC=∠BCD=90°又∵三角形CDE是等边三角形∴CE=DE,∠EDC=∠ECD=60°∴∠ADE=∠ECB∴△ADE≌△BCE.(2) ∵△CDE是等边三角形,∴CE=CD=DE,∵四边形ABCD是正方形∴CD=BC,∴C...
(1)由题意正方形ABCD的边AD=DC,在等边三角形CDE中,CE=DE,∠EDC等于∠ECD,即能证其全等.
(2)根据等边三角形、等腰三角形、平行线的角度关系,可以求得∠AFB的度数.

正方形的性质;全等三角形的判定与性质;等边三角形的性质.

本题考查了正方形、等边三角形、等腰三角形性质的综合运用,是涉及几何证明与计算的综合题,难度不大.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.