当前位置: > 当x趋于0时,求ln(1+x)-x+(1/2)x^2无穷小的阶数....
题目
当x趋于0时,求ln(1+x)-x+(1/2)x^2无穷小的阶数.

提问时间:2021-03-27

答案
要用到洛比达法则.
lim [ln(1+x)-x+(1/2)x^2]/x^n
=lim [1/(1+x) - 1 +x] /[n·x^(n-1)]
=lim [1 - (1+x) +x·(1+x)] /[n·x^(n-1)·(1+x)]
=lim [x²] /[n·(x^n + x^(n-1) )]
=lim [2x] /[a·x^(n-1) + b·x^(n-2) )]
=lim 2 /[a1·x^(n-2) + b1·x^(n-3) )]
其中a1,b1都是常数.
若分母不为0也不为∞,则x^(n-3)=1.
则n-3=0
n=3.
所以当x趋于0时,ln(1+x)-x+(1/2)x^2无穷小的阶数为3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.