当前位置: > x>0,求函数y=x/(x^2+2x+1)的最值,最好运用均值定理...
题目
x>0,求函数y=x/(x^2+2x+1)的最值,最好运用均值定理

提问时间:2021-03-27

答案

y=x/(x²+2x+1)
上下同时除以x,得
y=1/(x+1/x+2)
分母用均值不等式,即
x+1/x+2≧2√(x*1/x)+2=4
∴y=1/(x+1/x+2)≦1/4.
所以
y(max)=1/4.
无最小值!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.