当前位置: > 如图1,点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA⊥AB,且CA=AB. (1)求点B的坐标; (2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD; (3)连DE,...
题目
如图1,点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA⊥AB,且CA=AB.

(1)求点B的坐标;
(2)CA、CB分别交坐标轴于D、E,求证:S△ABD=S△CBD
(3)连DE,如图2,求证:BD-AE=DE.

提问时间:2021-03-27

答案

(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中
∠BAO=∠ACM
∠AOB=∠CMA
AB=AC

∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).
(2)证明:如图1,作CN⊥y轴于N,
∵AO=2,
∴A(-2,0),
∴OA=CN,
∴BD=BD,
∴根据等底(BD=BD)等高的三角形面积相等得出:S△ABD=S△CBD
(3)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中
AB=AC
∠ABF=∠CAE
BF=AE

∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中
AD=DC
∠FAD=∠ECD
AF=CE

∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE.
(1)作CM⊥x轴于M,求出CM=CN=2,证△BAO≌△ACM,推出AO=CM=2,OB=AM=4,即可得出答案;
(2)求出AO=CN=2,根据相似求出AD=DC,根据三角形面积公式求出即可;
(3)在BD上截取BF=AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案.

全等三角形的判定与性质;坐标与图形性质.

本题考查了全等三角形的性质和判定,相似三角形的性质和判定,三角形面积,坐标与图形性质的应用,主要考查学生的推理能力.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.