当前位置: > x^(1/2)是分子,分母是x^(1/2)-x^(1/3),求该式子的不定积分...
题目
x^(1/2)是分子,分母是x^(1/2)-x^(1/3),求该式子的不定积分

提问时间:2021-03-27

答案
令u = x^(1/6),x = u⁶,dx = 6u⁵ du
∫ x^(1/3)/[x^(1/2) - x^(1/3)] dx
= ∫ u²/(u³ - u²) * (6u⁵ du)
= 6∫ u⁷/(u³ - u²) du
= 6∫ u⁵/(u - 1) du
而u⁵ = u⁴[(u - 1) + 1]
= u⁴(u - 1) + u⁴
= u⁴(u - 1) + u³[(u - 1) + 1]
= u⁴(u - 1) + u³(u - 1) + u³
= u⁴(u - 1) + u³(u - 1) + u²[(u - 1) + 1]
= u⁴(u - 1) + u³(u - 1) + u²(u - 1) + u²
= u⁴(u - 1) + u³(u - 1) + u²(u - 1) + u[(u - 1) + 1]
= u⁴(u - 1) + u³(u - 1) + u²(u - 1) + u(u - 1) + u
= u⁴(u - 1) + u³(u - 1) + u²(u - 1) + u(u - 1) + (u - 1) + 1
所以原式 = 6∫ [u⁴ + u³ + u² + u + 1 + 1/(u - 1)] du
= 6[(1/5)u⁵ + (1/4)u⁴ + (1/3)u³ + (1/2)u² + u + ln|u - 1|] + C
将u = x^(1/6)代回,得结果
= (6/5)x^(5/6) + (3/2)x^(2/3) + x + 2x^(1/2) + 3x^(1/3) + 6x^(1/6) + 6ln|1 - x^(1/6)| + C
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.