当前位置: > 证明:设k是正整数,若一个有理数的k次方是整数,那么这个有理数一定是整数...
题目
证明:设k是正整数,若一个有理数的k次方是整数,那么这个有理数一定是整数
初等数论题目

提问时间:2021-03-27

答案
反证法:如果A不是整数,则A=C/D (C、D是整数并互质,且D≠1)
由(C/D)^K=N ,可得C^K=N* D^K
又考虑到分解质因数,两边应一样,显然左边C中没有D所含的质因数.两边不一样
那么等式不成立.所以证得A必须是整数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.