题目
已知函数f(x)=sin(2ωx+π/6)(ω>0)直线x=x1/x=x2是y=f(x)图像的恣意两条对称轴,且丨x1-x2丨最小值为π/2 t
已知函数f(x)=sin(2ωx+π/6)(ω>0)直线x=x1/x=x2是y=f(x)图像的恣意两条对称轴,且丨x1-x2丨最小值为π/2
(1) 求函数f(x)的单调增区间:(2) 若f(x)=1/3,α∈[-π/3,π/6],求f(α=π/6)的值; (3)若关于x的方程f(x+π/6)+mcosx+3=0在x∈(0,π/2)有实数解,务实数m的取值范围.求协助啊求协助
已知函数f(x)=sin(2ωx+π/6)(ω>0)直线x=x1/x=x2是y=f(x)图像的恣意两条对称轴,且丨x1-x2丨最小值为π/2
(1) 求函数f(x)的单调增区间:(2) 若f(x)=1/3,α∈[-π/3,π/6],求f(α=π/6)的值; (3)若关于x的方程f(x+π/6)+mcosx+3=0在x∈(0,π/2)有实数解,务实数m的取值范围.求协助啊求协助
提问时间:2021-03-26
答案
由丨x1-x2丨最小值为π/2得:T/2=π/2,所以T=π,因此ω=1,即f(x)=sin(2x+π/6)
(1)由-π/2+2kπ≤2x+π/6≤π/2+2kπ得:-π/3+kπ≤x≤π/6+kπ,即函数f(x)的单调增区间为
[-π/3+kπ,π/6+kπ](k∈z)
(2)因为f(x)=1/3,α∈[-π/3,π/6],所以f(α=π/6)=1/3
(3)f(x+π/6)+mcosx+3=0即sin(2x+π/2)+mcosx+3=0,所以cos2x+mcosx+3=0,即
2cos^2x+mcosx+2=0,
因为方程f(x+π/6)+mcosx+3=0在x∈(0,π/2)有实数解,所以有
△≥0
x1+x2>0
解这个不等式组可得:m≤-4
(1)由-π/2+2kπ≤2x+π/6≤π/2+2kπ得:-π/3+kπ≤x≤π/6+kπ,即函数f(x)的单调增区间为
[-π/3+kπ,π/6+kπ](k∈z)
(2)因为f(x)=1/3,α∈[-π/3,π/6],所以f(α=π/6)=1/3
(3)f(x+π/6)+mcosx+3=0即sin(2x+π/2)+mcosx+3=0,所以cos2x+mcosx+3=0,即
2cos^2x+mcosx+2=0,
因为方程f(x+π/6)+mcosx+3=0在x∈(0,π/2)有实数解,所以有
△≥0
x1+x2>0
解这个不等式组可得:m≤-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点