题目
设m,k为整数,方程mx2-kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为( )
A. -8
B. 8
C. 12
D. 13
A. -8
B. 8
C. 12
D. 13
提问时间:2021-03-26
答案
设f(x)=mx2-kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),
因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点
即由题意可以得到:必有
,即
,
在直角坐标系mok中作出满足不等式平面区域,
如图所示,设z=m+k,则直线m+k-z=0经过图中的阴影中的整点(6,7)时,
z=m+k取得最小值,即zmin=13.
故选D.
因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点
即由题意可以得到:必有
|
|
在直角坐标系mok中作出满足不等式平面区域,
如图所示,设z=m+k,则直线m+k-z=0经过图中的阴影中的整点(6,7)时,
z=m+k取得最小值,即zmin=13.
故选D.
将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.
二次函数的性质.
此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1Have you brought ( )with you? A something B anything C nothing D everything 选什么吖
- 2一个反应中生成1molA,转移电子2mol,那转移的电子数目为多少NA(阿伏伽德罗常数)
- 3to love you more
- 4这是微软公司在招聘员时曾出过的一道题:“某合唱团的四名成员A、B、C、D赶往演出现场,他们途中要经过一座小桥.当他们赶到桥头时,天已经黑了,周围没有灯.他们只有一个手电筒.现在规定:一次最多只许两个人
- 5影响消费的因素主要有居民收入和物价水平
- 6一个平面能将一个空间分成几部分?
- 7《故乡》的读书笔记怎样写?—要书名,作者,主人公,主要内容.〈鲁迅的>
- 8采用竖井开凿法大大缩短了工期,为什么詹天佑在开凿居庸关隧道时詹天佑没有采用
- 9空气密度为 X ,风轮直径为 1 米,风速为 23米/秒,此风力发电机的功率是多少?谢谢!
- 10怎么根据树桩的年轮来判断 方向
热门考点