当前位置: > 设f(x)=x^4+ax^3+2x^2+b...
题目
设f(x)=x^4+ax^3+2x^2+b
(1)若函数f(x)仅在x=0处有极值,求a的取值范围
(2)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围

提问时间:2021-03-26

答案
说明f(x)在0点取最大值
所以有f(x)≥f(0)
即有x4+ax3+2x2≥0
即x²(x²+ax+2)≥0恒成立
即(x²+ax+2)≥0恒成立
所以有Δ=a²−8≤0
得2√2≤a≤2√2
2)有f(0)=b<=1
f(1)=3+a+b<=1 恒成立
f(-1)=3-a+b<=1 恒成立
即 b<=-2-a 恒成立
b<=-2+a 恒成立
而 -4<=-2-a,-4<=-2+a
所以b<=-4
详见参考资料
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.