题目
第一题已知z=1+i,a,b为实数
(1)若w=z^2+3z(z上有个-)-4求IWI
(2)若z^2+az+b/i=1-i,求a,b的值
在三角形ABC中,已知(a+b+c)(a+b-c)=3ab,且2cosAsinB=sinC.判断三角形ABC的形状
(1)若w=z^2+3z(z上有个-)-4求IWI
(2)若z^2+az+b/i=1-i,求a,b的值
在三角形ABC中,已知(a+b+c)(a+b-c)=3ab,且2cosAsinB=sinC.判断三角形ABC的形状
提问时间:2021-03-26
答案
第一题:将z 带入得到w =5i-1,所以w 的绝对值=跟号下[5方+(-1)方]=跟号下26
下一问:将z 带入左边的式子得到(3+2a)i+(2a+b)=-2i+2,所以根据对应系数相等a=-5/2 b=7
第二题:前面的式子化简得到a^2+b^2-c^2=ab,所以根据余弦定理得到cosc=1/2,所以c =60 度.将后面的实习化简,利用正弦定理,和余弦定理,得到a^2=b^2,所以a 边等于b 边,所以为三角行为等边三角行.
第二题说的详细些就是cosa=(b^2+c^2-a^2)/2bc,sinb=B/2R,sinc=C/2R,将这些数据带入等式中,化简,就得到了a^2=b^2
下一问:将z 带入左边的式子得到(3+2a)i+(2a+b)=-2i+2,所以根据对应系数相等a=-5/2 b=7
第二题:前面的式子化简得到a^2+b^2-c^2=ab,所以根据余弦定理得到cosc=1/2,所以c =60 度.将后面的实习化简,利用正弦定理,和余弦定理,得到a^2=b^2,所以a 边等于b 边,所以为三角行为等边三角行.
第二题说的详细些就是cosa=(b^2+c^2-a^2)/2bc,sinb=B/2R,sinc=C/2R,将这些数据带入等式中,化简,就得到了a^2=b^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1负二的2003次方加负二的2002次方等于
- 2下列说法正确的是( ) A.有理数是指整数、分数、零、正有理数、负有理数这五类 B.一个有理数不是正数就是负数 C.一个有理数不是整数就是分数 D.以上说法都正确
- 3用一根长8米的1.71围着一棵树绕4圈,还余1.72,这棵树的直径是多少米.
- 4已知数列{an}中a1=1,an+1=3an/an +3,求通项公式
- 5简便计算,一定要写出全部过程!最好要有解题讲解!
- 6集合 .
- 7有没有英文字母的艺术字,比如像迪斯尼的英文一样.
- 8春 作者从哪几个方面运用哪些修辞手法来写春草的特点?
- 9怎样显微镜制作(要专业的回答哦)
- 1011、19、92、132中,( )是质数,132是( )的倍数,11是( )的约数.