当前位置: > 若方程(K^2-1)X^2-6(3K-1)X+72=0有两个不同的正整数根,求K的整数值....
题目
若方程(K^2-1)X^2-6(3K-1)X+72=0有两个不同的正整数根,求K的整数值.

提问时间:2021-03-26

答案
根据求根公式x=[-b±根号(b^2-4ac)]/2a
得到
x={6(3k-1)±根号[36(3k-1)^2-4(k^2-1)×72]}/[2(k^2-1)]
={6(3k-1)±根号[36(k-3)^2]}/[2(k+1)(k-1)]
x1=12/(k+1)
x2=6/(k-1)
因为x为正整数,k为整数,由x2=6/(k-1)可知k=2,3,4,7
同时满足x1的条件的k值仅能为2,3
因为X1x2,所以x3
所以k=2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.