当前位置: > 求证:a...
题目
求证:a

提问时间:2021-03-26

答案
方法一:
∵a<0,∴y=f(x)是一条开口向下的抛物线.
而f(x)=ax^2+bx+c=a(x^2+bx/a)+c=a[x+b/(2a)]^2-b^2/(4a)+c.
∴抛物线的对称轴是x=-b/(2a).
显然,开口向下的抛物线在对称轴的右侧是递减的.
∴函数f(x)在区间[-b/(2a),+∞)上是减函数.
方法二:
∵f(x)=ax^2+bx+c,∴f′(x)=2ax+b,令f′(x)<0,得:2ax+b<0,∴2ax<-b.
∵a<0,∴x>-b/(2a).
∴函数f(x)在区间[-b/(2a),+∞)上是减函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.