当前位置: > 不等式x^2-mx-2m≤0有实数解,且对于任意地实数解x1、x2恒有|x1-x2|≤3,求实数m的取值范围....
题目
不等式x^2-mx-2m≤0有实数解,且对于任意地实数解x1、x2恒有|x1-x2|≤3,求实数m的取值范围.
正确答案是[-9,-8]∪[0,1],

提问时间:2021-03-26

答案
x^2-mx-2m≤0有实数解,得 x^2-mx-2m=0有实数解
则 判别式=m^2+8m≥0 且 两根和为m,积为-2m
对于任意地实数解x1、x2恒有|x1-x2|≤3,得
0≤(x1-x2)^2=(x1+x2)^2-4x1x2≤m^2+8m≤9
解,得 m∈[-9,-8]∪[0,1]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.