当前位置: > 等式两边的函数,一个函数极限不存在不能说明另外一边的函数极限不存在,这是在用罗比达法则时遇到的,...
题目
等式两边的函数,一个函数极限不存在不能说明另外一边的函数极限不存在,这是在用罗比达法则时遇到的,
如求当x趋于0时,(x^2sin(1/x))/cos(1/x)的极限,如果用罗比达法则就会发现分子极限不存在,故不能使用,从中我即联想到上个问题 “等式两边的函数,一个函数极限不存在不能说明另外一边的函数极限不存在”,这个从函数变化的角度怎么来看,(或者高手有其他好的角度)来剖析这个问题的本质原因出在哪.

提问时间:2021-03-26

答案
两边的函数不可以随便拿来相除,那样会因某些因素而变相的改变了其中一方的定义域 罗比达法则的前提是二者是在定义域范围内可解析
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.