当前位置: > 证明:对于n>=3,存在n个不同正整数,它们的立方和是一个正整数的立方....
题目
证明:对于n>=3,存在n个不同正整数,它们的立方和是一个正整数的立方.

提问时间:2021-03-25

答案
证明:对于n>=3,存在n个不同正整数,它们的立方和是一个正整数的立方.
证明 归纳法证明.因为
3^3+4^3+5^3=6^3;
2^3+3^3+8^3+13^3=14^3.
设(a1)^3+(a2)^3+…+(an)^3=c^3
则(3a1)^3+(4a1)^3+(5a1)^3+(6a2)^3+…+(6an)^3=(6c)^3.证毕.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.