当前位置: > 设f(x)=(sinx)^2+(cosx)^2,试用微分中值定理证明:对于一切x属于负无穷到正无穷,恒有f(x)=1...
题目
设f(x)=(sinx)^2+(cosx)^2,试用微分中值定理证明:对于一切x属于负无穷到正无穷,恒有f(x)=1

提问时间:2021-03-25

答案
对一切实数x,
因为f ' (x)=.=0,
所以f(x)恒=常数C,
取x=0,得到C=1,
所以f(x)恒=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.