题目
问两道圆锥曲线题
1.在三角形AFB 中 角AFB=150度 S三角形AFB=2-根号3 以F为一个焦点 AB分别是椭圆的长.短轴端点的 椭圆方程是?
2.已知圆 X^2+y^2-6x-55=0 动圆M经过定点A(-3,0) 且与已知圆相内切 则圆心M的轨迹方程为?
1.在三角形AFB 中 角AFB=150度 S三角形AFB=2-根号3 以F为一个焦点 AB分别是椭圆的长.短轴端点的 椭圆方程是?
2.已知圆 X^2+y^2-6x-55=0 动圆M经过定点A(-3,0) 且与已知圆相内切 则圆心M的轨迹方程为?
提问时间:2021-03-25
答案
1. a方-b方=c方
1/2(a-c)*b=2-根号3
c=根号3*b
联立可解得a方=8,b方=2,c方=6.椭圆方程可求
2.可理解为到两定点(-3,0)和(3,0)的距离和为定值8,显然为椭圆,所以曲线方程可求.
1/2(a-c)*b=2-根号3
c=根号3*b
联立可解得a方=8,b方=2,c方=6.椭圆方程可求
2.可理解为到两定点(-3,0)和(3,0)的距离和为定值8,显然为椭圆,所以曲线方程可求.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点