当前位置: > 若A^2=B^2=I,且|A|+|B|=0,证明:A+B是不可逆矩阵...
题目
若A^2=B^2=I,且|A|+|B|=0,证明:A+B是不可逆矩阵

提问时间:2021-03-25

答案
证:因为 A^2=B^2=E所以 |A|^2=|B|^2=1所以 |A|=±1,|B|=±1 再由 |A|+|B|=0 知 |A|,|B| 必一正一负,即有 |A||B|=-1.所以 -|A+B|= |A||A+B||B|= |A(A+B)B|= |AAB+ABB|= |B+A|= |A+B|所以有 2|A+B| = 0所以 |A+B| = 0....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.