当前位置: > 求函数的极限:lim(1^n+2^n+3^n+4^n)^1/n,当n→∞时的极限.(不用夹逼准则解)...
题目
求函数的极限:lim(1^n+2^n+3^n+4^n)^1/n,当n→∞时的极限.(不用夹逼准则解)

提问时间:2021-03-25

答案
n→∞
lim(1^n+2^n+3^n+4^n)^(1/n)
=e^lim[(1/n)*ln(1^n+2^n+3^n+4^n)]
下面求lim[(1/n)*ln(1^n+2^n+3^n+4^n)]
=lim(1/n)*ln{(4^n)*[(1/4)^n+(2/4)^n+(3/4)^n+1]}
=lim(1/n)*{nln4+ln[1+(1/4)^n+(2/4)^n+(3/4)^n]}
这里ln[1+(1/4)^n+(2/4)^n+(3/4)^n]等价于(1/4)^n+(2/4)^n+(3/4)^n
=ln4+lim[(1/4)^n+(2/4)^n+(3/4)^n]/n
=ln4
所以最后结果为e^ln4=4
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.