当前位置: > 证f(x+y)+f(x-y)=2f(x)f(y)为偶函数能否取-y?...
题目
证f(x+y)+f(x-y)=2f(x)f(y)为偶函数能否取-y?
f(x+y)+f(x-y)=2f(x)f(y)取-y即把y换成-y
f(x+y)+f(x-y)=2f(x)f(-y)比较两式得f(y)=f(-y)所以为偶函数?
那为什么书上不这么证

提问时间:2021-03-24

答案
可以,已知等式f(x+y)+f(x-y)=2f(x)f(y),取-y后,得又一等式
f(x-y)+f(x+y)=2f(x)f(-y),
则由两等式左侧相等得到等式右侧也相等,
即为2f(x)f(y)=2f(x)f(-y),即f(y)=f(-y),所以此函数为偶函数.
证明完毕
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.